Лабораторные работы по электротехнике

Математика
Примеры решения задач
Матрицы и определители
Действия над матрицами
Нахождение обратной матрицы
Прямая на плоскости
Аналитическая геометрия
Системы линейных алгебраических уравнений
Векторная алгебра
Начала анализа
Дифференциальное и интегральное исчисление
Кратные и криволинейные интегралы
Обыкновенные дифференциальные уравнения
Ряды
Теория поля
Элементы теории функций комплексного переменного
Найти координаты вектора
Кривые второго порядка

Исследование функций и построение графиков

Найти область определения функции
Основные элементарные функции
Функции трех переменных
Теория вероятности
Последовательность нанесения размеров
Изображение прямых, плоскостей и многогранников
Примеры построения многогранных поверхностей
Позиционные задачи на взаимопринадлежность
Пересечение прямой с координатными осями
Вращение прямой
Вращение плоскости
Проецирование прямой линии в точку

Решение метрических задач

Методичка по химии
Электронное строение атома
Химическая связь
Классы неорганических соединений
Элементы химической термодинамики и термохимии
Периодический закон и периодическая система Д.И. Менделеева
Химическая кинетика и химическое равновесие
Электролитическая диссоциация
Растворы
Коллоидные растворы
Растворы неэлектролитов
Окислительно-восстановительные реакции
Электрохимические процессы в гетерогенных системах
Коррозия металлов
Электролиз
Задачи по сопромату
Проверить прочность стального стержня
Расчеты на растяжение и сжатие
Геометрические характеристики плоских сечений
Определить осевые моменты инерции прямоугольника
Осевые моменты инерции плоских составных сечений
Дополнительные задачи на сдвиг
Расчет напряжений и деформаций валов
Построить эпюры крутящих моментов
Эпюры главных напряжений при изгибе
Расчет балок на жесткость
Определение перемещений при помощи интеграла Мора
Сварная балка
Совместное действие изгиба и кручения
Расчет толстостенных труб
Практические расчеты стержней на устойчивость
Упругий удар
Неупругое деформирование
Предельная нагрузка для балок
Лабораторный практикум
Лабораторные работы
Опытная проверка теории косого изгиба

Испытание стальной трубы на изгиб с кручением

Строительная механика
Учет подвижной статической нагрузки
Расчет шпренгельных ферм
Интеграл Мора
Бесшарнирная арк
Неразрезная балка
 

Переходные процессы в линейных электрических цепях

Переходный процесс в цепи с конденсатором и резисторами

Цепь с одним конденсатором и сопротивлениями описывается дифференциальным уравнением первого порядка, поэтому свободная составляющая тока или напряжения в любой ветви имеет одно слагаемое вида , где р – корень характеристического уравнения, а А – постоянная интегрирования.

Характеристическое уравнение может быть составлено в виде:

,

где Z(p) и Y(p) - - входные операторные сопротивление и проводимость. Они могут быть получены заменой в выражениях комплексного сопротивления или проводимости цепи аргумента j на оператор р.

Постоянные интегрирования А для каждого тока или напряжения определяется из начальных условий. Для определения постоянной А необходимо знать значение искомой функции в первый момент времени после коммутации (при t = +0).

Начальное значение напряжения на конденсаторе определяется из первого закона коммутации: uC(+0) = uC(-0).). В свою очередь uC(-0 определяется из расчёта цепи до коммутации. Начальные значения других величин (токов и напряжений, которые могут изменяться скачком) рассчитываются по закону Ома и законам Кирхгофа в момент времени t= +0.

Таким образом, все токи и напряжения в переходном режиме изменяются по экспоненциальному закону с одной и той же постоянной времени () от начального значения до установившегося. Причём, начальное значение напряжения на конденсаторе равно напряжению на нём непосредственно перед коммутацией, т. е. скачком не меняется.

В данной работе коммутация (включение и выключение) осуществляется транзистором, на базу которого подаются отпирающие импульсы тока от источника синусоидального напряжения с частотой 50 Гц. В результате оба переходных процесса периодически повторяются и их можно наблюдать на осциллографе.

Экспериментальная часть

Задание

Рассчитать докоммутационные (t = - 0), начальные (t = + 0) и установившиеся (t) значения токов и напряжения на конденсаторе в цепи (рис. 10.1.1) в двух случаях: 1. - ключ замыкается; 2. - ключ размыкается.

Рис. 10.1.1

В каждом из этих случаев определить постоянную времени цепи, снять осциллограммы рассчитанных величин и убедиться, что все токи и напряжение на конденсаторе изменяются с одной постоянной времени, а напряжение на конденсаторе не имеет скачков.

Порядок выполнения работы

При включении ключа в цепи (рис. 10.1.1) рассчитайте токи и напряжение на конденсаторе до коммутации (t = - 0, ключ разомкнут), в первый момент после коммутации (t = + 0, ключ замкнут) и в новом установившемся режиме (t). Результаты расчёта занесите в табл. 10.1.1.

Повторите расчёт при размыкании ключа. Результаты занесите также в табл. 10.1.2.

Составьте характеристическое уравнение, определите корень р и постоянную времени для первого и для второго случаев, занесите результаты в табл. 10.1.1 и 10.1.2.

Соберите цепь согласно схеме (рис.10.1.2), включив в неё вместо изображенных измерительных приборов соответствующие гнёзда коннектора. Обратите внимание на полярность электролитического конденсатора.

Включите осциллограф, установите развёртку 2 мС/дел и перерисуйте изображение четырёх измеряемых величин на график (рис.10.1.3). Не забудьте указать масштаб для каждой кривой.

Определите по графику или непосредственно по осциллографу докоммутационные (t = - 0) начальные (t = + 0) и установившиеся (t) значения токов и напряжения на конденсаторе в цепи в двух случаях: 1. - ключ замыкается; 2. - ключ размыкается. Занесите их также в табл. 10.1.1 и10.1.2 и сравните с расчётными.

Рис. 10.1.2

Определите по графикам постоянные времени при замыкании и размыкании ключа. Сравните их с расчётными значениями и занесите в табл. 10.1.1 и 10.1.2.

Проанализируйте результаты и сделайте выводы.

- ключ замыкается

Таблица 10.1.1

t

uC, В

i1, ьА

i2, мА

i3, мА

, мС

- 0, расчёт

- 0, эксперимент

Расчёт:

 = мС

Эксперимент:

 = мС

+ 0, расчёт

+ 0, эксперимент

, расчёт

, эксперимент

- ключ размыкается

Таблица 10.1.1

t

uC, В

i1, ьА

i2, мА

i3, мА

, мС

- 0, расчёт

- 0, эксперимент

Расчёт:

 = мС

Эксперимент:

 = мС

+ 0, расчёт

+ 0, эксперимент

, расчёт

, эксперимент

Рис.10.1.2

Процессы включения и отключения цепи с катушкой индуктивности

Цепь с одной катушкой индуктивности, так же как и цепь с одним конденсатором описывается дифференциальным уравнением первого порядка. Поэтому все токи и напряжения в переходном режиме изменяются по экспоненциальному закону с одной и той же постоянной времени () от начального значения до установившегося. Причём, начальное значение тока в индуктивности равно току в ней непосредственно перед коммутацией, так как ток в катушке не может изменяться скачком по закону коммутации. Напряжение на катушке может изменяться скачком и при отключении может достигать весьма больших значений.

В данной работе коммутация (включение и выключение цепи) осуществляется транзистором, на базу которого подаются однополярные прямоугольные отпирающие импульсы тока от генератора напряжений специальной формы с частотой 200 Гц. Поэтому

оба переходных процесса периодически повторяются и их можно наблюдать на обычном или виртуальном осциллографе.

Экспериментальная часть

Задание

Вывести на дисплей виртуального осциллографа кривые тока и напряжения на катушке индуктивности при подключении и отключении источника постоянного напряжения. В каждом из этих случаев определить экспериментально и рассчитать докоммутационные (t = - 0), начальные (t = + 0) и установившиеся (t) значения тока и напряжения на катушке, определить по осциллограмме постоянную времени цепи

.

Экспериментальная часть

Соберите цепь согласно схеме (рис.10.2.2), включив в неё вместо изображенных измерительных приборов соответствующие гнёзда коннектора.

Рис. 10.2.1

Включите осциллограф, установите развёртку 0,5 мС/дел и перерисуйте изображение тока и напряжения на катушке на график (рис.10.2.2). Не забудьте указать масштаб для каждой кривой.

Определите по графику или непосредственно по осциллографу докоммутационные (t = - 0) начальные (t = + 0) и установившиеся (t) значения токов и напряжений на катушке в двух случаях: 1. - ключ замыкается; 2. - ключ размыкается. Занесите их в табл. 10.2.1.

Рассчитайте токи и напряжения на катушке для этих же моментов времени, занесите результаты также в табл. 10.2.1. Сравните результаты расчёта и эксперимента.

Определите по осциллограммам постоянные времени при включенном и при отключенном источнике питания.

Таблица 10.1.1

t

Включение,  = мС

Выключение,  = мС

uL, В

iL, мА

uL, В

iL, мА

- 0, расчёт

- 0, эксперимент

+ 0, расчёт

+ 0, эксперимент

, расчёт

, эксперимент

Рис.10.2.2

Трехфазные цепи синусоидального тока