Лабораторные работы по электротехнике

Математика
Примеры решения задач
Матрицы и определители
Действия над матрицами
Нахождение обратной матрицы
Прямая на плоскости
Аналитическая геометрия
Системы линейных алгебраических уравнений
Векторная алгебра
Начала анализа
Дифференциальное и интегральное исчисление
Кратные и криволинейные интегралы
Обыкновенные дифференциальные уравнения
Ряды
Теория поля
Элементы теории функций комплексного переменного
Найти координаты вектора
Кривые второго порядка

Исследование функций и построение графиков

Найти область определения функции
Основные элементарные функции
Функции трех переменных
Теория вероятности
Последовательность нанесения размеров
Изображение прямых, плоскостей и многогранников
Примеры построения многогранных поверхностей
Позиционные задачи на взаимопринадлежность
Пересечение прямой с координатными осями
Вращение прямой
Вращение плоскости
Проецирование прямой линии в точку

Решение метрических задач

Методичка по химии
Электронное строение атома
Химическая связь
Классы неорганических соединений
Элементы химической термодинамики и термохимии
Периодический закон и периодическая система Д.И. Менделеева
Химическая кинетика и химическое равновесие
Электролитическая диссоциация
Растворы
Коллоидные растворы
Растворы неэлектролитов
Окислительно-восстановительные реакции
Электрохимические процессы в гетерогенных системах
Коррозия металлов
Электролиз
Задачи по сопромату
Проверить прочность стального стержня
Расчеты на растяжение и сжатие
Геометрические характеристики плоских сечений
Определить осевые моменты инерции прямоугольника
Осевые моменты инерции плоских составных сечений
Дополнительные задачи на сдвиг
Расчет напряжений и деформаций валов
Построить эпюры крутящих моментов
Эпюры главных напряжений при изгибе
Расчет балок на жесткость
Определение перемещений при помощи интеграла Мора
Сварная балка
Совместное действие изгиба и кручения
Расчет толстостенных труб
Практические расчеты стержней на устойчивость
Упругий удар
Неупругое деформирование
Предельная нагрузка для балок
Лабораторный практикум
Лабораторные работы
Опытная проверка теории косого изгиба

Испытание стальной трубы на изгиб с кручением

Строительная механика
Учет подвижной статической нагрузки
Расчет шпренгельных ферм
Интеграл Мора
Бесшарнирная арк
Неразрезная балка
 

Трехфазные цепи синусоидального тока

Напряжения в трехфазной цепи

Трехфазная система напряжений (ЭДС) – это совокупность трех синусоидальных напряжений (ЭДС), сдвинутых относительно друг друга по фазе. Система называется симметричной, если амплитуды всех трех напряжений одинаковы, а фазовые сдвиги составляют 120 градусов.

Обычный трехфазный генератор, применяемый в электроэнергетике, состоит из неподвижного статора и вращающегося ротора. На роторе имеется обмотка возбуждения, по которой протекает постоянный ток от синусоидального источника. Постоянный ток создает магнитное поле, вращающееся вместе с ротором. На статоре имеется три обмотки, смещенные относительно друг друга в пространстве на 120о. В них наводится три одинаковых синусоидальных ЭДС, смещенных во времени. Фазовый сдвиг составляет 120о.

Временная развертка этих напряжений приведена на рис. 8.1.1. Они же представлены в виде векторов на диаграмме (рис. 8.1.2).

Рис. 8.1.1 Рис. 8.1.2

В трехфазных электрических генераторах и нагрузках (в частности, двигателях) в качестве основных схем соединения фаз используются «звезда» (рис. 8.1.3) и «треугольник» (рис. 8.1.4). Соединение в звезду может выполняться с нейтральным проводом (на рисунке он показан пунктиром) или без него.

В схеме «звезда» напряжения между выводами А, В и С называются линейными, тогда как напряжение между любой из этих точек и нейтралью N принято называть фазным. Векторная диаграмма напряжений такой трехфазной цепи приведена также на рис. 8.1.3, где показаны соотношения между фазами и величинами линейных UЛ и фазных UФ напряжений. Так, в частности, между их действующими значениями имеется следующая связь:

UЛ = Ö 3 ×

В схеме «треугольник» линейные напряжения равны соответствующим фазным.

В последующих экспериментах изучаются напряжения и токи в трехфазных цепях с соединением «звезда» и «треугольник». Измеряются и рассчитываются обычно действующие значения напряжений и токов.

Рис. 8.1.3

Рис. 8.1.4

Необходимое для экспериментов трехфазное напряжение частотой 50 Гц берется не непосредственно из питающей сети, а создается с помощью специального генератора синусоидальных напряжений. При этом из соображений электробезопасности величина линейного напряжения ограничена 12 В.

Экспериментальная часть

Задание

Выведите на дисплей виртуального осциллографа кривые фазных напряжений трехфазного источника, перенесите их на график, измерьте виртуальными приборами линейные и фазные напряжения и углы сдвига между фазными напряжениями.

Порядок выполнения эксперимента

Соберите цепь согласно схеме (рис. 8.1.5), подключите выходы трехфазного генератора А и В к аналоговым входам коннектора V0 и V1.

Включите виртуальные вольтметры V0 и V1 и осциллограф, установите пределы

измерений и развертки. Включите также виртуальный фазометр для измерения угла

сдвига фаз между напряжениями UA и UB.

Рис. 8.1.5

Перенесите на график (рис. 8.1.6) осциллограммы напряжений UA, UB, переключите вход коннектора V1 на фазу С и перенесите осциллограмму напряжения UC на график.

Измерьте виртуальными вольтметрами все фазные и линейные напряжения, а также углы сдвига фаз между напряжениями UA и UB, UB и UC, UC и UA. Результаты измерений и расчетов занесите в табл. 8.1.1.

Рис. 8.1.6

Таблица 8.1.1.

Измерения

Расчет

UA, В

Среднее значение фазных напряжений:

UФ = (UA + UВ + UС) / 3 = … В

UB, В

UС, В

Среднее значение линейных напряжений:

UЛ = (UAВ + UВС + UСА) / 3 = … В

UАВ, В

UВС, В

Отношение

UФ / UЛ = …

UСА, В

yА – yВ, град

Средний угол сдвига между фазными напряжениями:

yВ – yС, град

yС – yА, град


Трехфазная нагрузка, соединенная по схеме «звезда»

Если нагрузки (приемники) соединены в трехфазную цепь по схеме «звезда» (рис. 8.2.1), то к сопротивлениям нагрузки приложены фазные напряжения. Линейные токи равны фазным и определяются по закону Ома:

а ток в нейтрали равен векторной сумме этих токов: IN = IA + IB + IC.

Рис. 8.2.1

При симметричных напряжениях UA, UB, UC и одинаковых сопротивлениях RA= RB = RC = R токи IA, IB, IC также симметричны и их векторная сумма (IN) равна нулю. Тогда

IЛ = IФ = UФ ¤ R; IN = 0.

Если же сопротивления фаз нагрузки неодинаковы, то через нулевой провод протекает некоторый ток IN ¹ 0. Это поясняется на векторных диаграммах (рис. 8.2.2).

Рис. 8.2.2.

Мощность трёхфазной нагрузки складывается из мощностей фаз: SP = PА + PВ + PС.

Когда нагрузка симметричная и чисто резистивная, имеем

SP = 3 PФ = 3UФ × IФ.

При смешанной (активно-индуктивной или активно-емкостной) нагрузке:

Активная мощность

SP = 3 ××× cosj = Ö3 ××× cosj.

Реактивная мощность

SQ = 3 ××× sinj = Ö3 ××× sinj.

Полная мощность

SS = 3 ×UФ IФ = Ö3 ×× IЛ .

Экспериментальная часть

Задание

Для трехфазной цепи с соединением «звезда» при симметричной и несимметричной нагрузках измерьте с помощью мультиметра или виртуальных приборов действующие значения токов IЛ и IN, а также напряжений UЛ и UФ, вычислите мощности PФ и SPФ, простройте векторные диаграммы.

Порядок выполнения эксперимента

Соберите цепь с симметричной нагрузкой (RA = RB = RC = 1 кОм) согласно схеме (рис. 8.2.3).

Рис. 8.2.3

Измерьте действующие значения напряжений и токов согласно табл. 8.2.1 и вычислите мощности.


Таблица 8.2.1

Схема «звезда»

Нагрузка симметричная

Нагрузка несимметричная

Линейные и фазные токи, ток нейтрали мА

IA

IB

IC

IN

Линейн. напряжения, В

UAB

UBC

UCA

Фазные напряжения, В

UA

UB

UC

Фазные мощности, мВт

PA

PB

PC

Общая мощность, мВт

SP

Повторите измерения и вычисления для несимметричной нагрузки (RA = 1 кОм, RB = 680 Ом, RC = 330 Ом).

На рис. 8.2.4 в масштабе постройте векторные диаграммы.

Рис. 8.2.4.

Трехфазные цепи синусоидального тока