Лабораторные работы по электротехнике

Математика
Примеры решения задач
Матрицы и определители
Действия над матрицами
Нахождение обратной матрицы
Прямая на плоскости
Аналитическая геометрия
Системы линейных алгебраических уравнений
Векторная алгебра
Начала анализа
Дифференциальное и интегральное исчисление
Кратные и криволинейные интегралы
Обыкновенные дифференциальные уравнения
Ряды
Теория поля
Элементы теории функций комплексного переменного
Найти координаты вектора
Кривые второго порядка

Исследование функций и построение графиков

Найти область определения функции
Основные элементарные функции
Функции трех переменных
Теория вероятности
Последовательность нанесения размеров
Изображение прямых, плоскостей и многогранников
Примеры построения многогранных поверхностей
Позиционные задачи на взаимопринадлежность
Пересечение прямой с координатными осями
Вращение прямой
Вращение плоскости
Проецирование прямой линии в точку

Решение метрических задач

Методичка по химии
Электронное строение атома
Химическая связь
Классы неорганических соединений
Элементы химической термодинамики и термохимии
Периодический закон и периодическая система Д.И. Менделеева
Химическая кинетика и химическое равновесие
Электролитическая диссоциация
Растворы
Коллоидные растворы
Растворы неэлектролитов
Окислительно-восстановительные реакции
Электрохимические процессы в гетерогенных системах
Коррозия металлов
Электролиз
Задачи по сопромату
Проверить прочность стального стержня
Расчеты на растяжение и сжатие
Геометрические характеристики плоских сечений
Определить осевые моменты инерции прямоугольника
Осевые моменты инерции плоских составных сечений
Дополнительные задачи на сдвиг
Расчет напряжений и деформаций валов
Построить эпюры крутящих моментов
Эпюры главных напряжений при изгибе
Расчет балок на жесткость
Определение перемещений при помощи интеграла Мора
Сварная балка
Совместное действие изгиба и кручения
Расчет толстостенных труб
Практические расчеты стержней на устойчивость
Упругий удар
Неупругое деформирование
Предельная нагрузка для балок
Лабораторный практикум
Лабораторные работы
Опытная проверка теории косого изгиба

Испытание стальной трубы на изгиб с кручением

Строительная механика
Учет подвижной статической нагрузки
Расчет шпренгельных ферм
Интеграл Мора
Бесшарнирная арк
Неразрезная балка
 

Трансформаторы

Трансформатор состоит из двух или большего числа катушек (обмоток), магнитная связь, между которыми обеспечивается с помощью ферромагнитного сердечника. Трансформаторы используются для преобразования и согласования напряжений, токов и сопротивлений, а также для развязывания электрических цепей (гальваническая развязка).

В идеальном трансформаторе, то есть в трансформаторе без потерь, потребляемая им мощность равна мощности отдаваемой. В реальности, однако, имеют место потери мощности в меди обмоток (в омических сопротивлениях обмоток) и в сердечнике трансформатора, поэтому резистору нагрузки отдается только часть потребляемой трансформатором мощности.


Коэффициент магнитной связи

Чтобы обеспечить требуемую магнитную связь между первичной и вторичной обмотками трансформатора, их помещают на общем сердечнике.

Рис. 7.1

Когда по первичной обмотке W1 протекает ток I1, то большая часть создаваемого им магнитного потока Ф0 сцепляется также и с витками вторичной катушки W2. Однако часть создаваемого первой катушкой потока ФS замыкается, минуя вторую катушку. Эта часть потока называется потоком рассеяния.

Отношение

КСВ = Ф0 / (Ф0 + ФS)

называется коэффициентом магнитной связи. Его можно выразить через напряжения U1 и U2 при холостом ходе и число витков:

или через индуктивности и взаимную индуктивность

.

В идеальном трансформаторе коэффициент связи стремится к единице, однако равным или больше единицы он быть не может.

Во избежание искажения сигналов при их трансформировании и для исключения преждевременного магнитного насыщения материала сердечника постоянным током коэффициент связи уменьшают, разрывая сердечник (создавая воздушный зазор).

Экспериментальная часть

Задание

Измеряя напряжения, определите коэффициент магнитной связи между катушками

при наличии замкнутого сердечника,

при наличии сердечника с зазором,

при наличии половины сердечника,

при отсутствии сердечника.

Порядок выполнения эксперимента

первичная

обмотка

 

W2

900

 

W1

900

 
Разместите первичную и вторичную катушки, имеющие по 900 витков каждая, на разъемном сердечнике, состоящем из двух половин, как показано на рис. 7.1.1.

 


Рис. 7.1.1.


Подсоедините источник синусоидального напряжения к выводам первичной обмотки согласно схеме (рис.7.1.2) и установите напряжение U1 = 6…7 В, f = 1 кГц.

Рис. 7.1.2.

Измерьте мультиметром первичное и вторичное напряжения и занесите результат в таблицу 7.1.1 (строка «При наличии замкнутого сердечника»). Вычислите КСВ.

Таблица 7.1.1

U1, В

U2, В

КСВ = U2/U1

При наличии замкнутого сердечника

При наличии сердечника с воздушным зазором

При наличии половины сердечника

При отсутствии сердечника

Для измерения напряжений при наличии сердечника с зазором поместите квадратики плотной бумаги между верхней и нижней половинами разъемного сердечника, чтобы имитировать воздушный зазор.

Удалите одну подкову разъемного сердечника и повторите опыт.

Удалите сердечник полностью и заполните последнюю строку табл. 7.1.1.

Вопрос: Почему изменяется вторичное напряжение?

Ответ: ………………..


Коэффициент трансформации

Отношение числа витков первичной обмотки к числу витков вторичной обмотки трансформатора называют коэффициентом трансформации. Отношение чисел витков соответствует отношению первичного напряжения к вторичному при отсутствии нагрузки (холостом ходе) трансформатора и отношению вторичного тока к первичному при коротком замыкании.

В идеальном трансформаторе (при отсутствии потерь, при КСВ®1 и бесконечно больших индуктивностях обмоток L1 и L2) при любой нагрузке:

КТР = W1 / W2 = U1 / U2 = I2 / I1

Экспериментальная часть

Задание

Измеряя напряжения и токи, определите коэффициенты трансформации при различных числах витков обмоток.

Порядок выполнения эксперимента

Соберите первичную (300 витков) и вторичную (100 витков) обмотки на разъемном сердечнике, как показано на рис. 7.2.1.


Рис. 7.2.1.

Подключите источник питания к выводам первичной обмотки согласно рис. 7.2.3 и установите синусоидальное напряжение U1 = 6 В, f = 1 кГц.


Рис. 7.2.3.

Измерьте вторичные напряжения U2 на выводах вторичных обмоток с числами витков 100, 300 и 900 при холостом ходе. Занесите результаты в таблицу 7.2.1.

Таблица 7.2.1

W1

W2

U1, В

U2, В

КТР

300

100

6

300

300

6

300

900

6

Вычислите значения коэффициента трансформации по формуле

КТР = U1 / U2


Проделайте опыт короткого замыкания, измерив первичные и вторичные токи при числах витков вторичной обмотки 100, 300 и 900, как показано на рис. 7.2.4 и занесите результаты измерений в таблицу 7.2.2. Ток I1 следует поддерживать неизменным, равным 50 мА.

Рис. 7.2.4.

КТР = I2 / I1

Таблица 7.2.2

W1

W2

I1, мА

I2, мА

КТР

300

100

300

300

300

900

Трехфазные цепи синусоидального тока