Лабораторные работы по электротехнике

Математика
Примеры решения задач
Матрицы и определители
Действия над матрицами
Нахождение обратной матрицы
Прямая на плоскости
Аналитическая геометрия
Системы линейных алгебраических уравнений
Векторная алгебра
Начала анализа
Дифференциальное и интегральное исчисление
Кратные и криволинейные интегралы
Обыкновенные дифференциальные уравнения
Ряды
Теория поля
Элементы теории функций комплексного переменного
Найти координаты вектора
Кривые второго порядка

Исследование функций и построение графиков

Найти область определения функции
Основные элементарные функции
Функции трех переменных
Теория вероятности
Последовательность нанесения размеров
Изображение прямых, плоскостей и многогранников
Примеры построения многогранных поверхностей
Позиционные задачи на взаимопринадлежность
Пересечение прямой с координатными осями
Вращение прямой
Вращение плоскости
Проецирование прямой линии в точку

Решение метрических задач

Методичка по химии
Электронное строение атома
Химическая связь
Классы неорганических соединений
Элементы химической термодинамики и термохимии
Периодический закон и периодическая система Д.И. Менделеева
Химическая кинетика и химическое равновесие
Электролитическая диссоциация
Растворы
Коллоидные растворы
Растворы неэлектролитов
Окислительно-восстановительные реакции
Электрохимические процессы в гетерогенных системах
Коррозия металлов
Электролиз
Задачи по сопромату
Проверить прочность стального стержня
Расчеты на растяжение и сжатие
Геометрические характеристики плоских сечений
Определить осевые моменты инерции прямоугольника
Осевые моменты инерции плоских составных сечений
Дополнительные задачи на сдвиг
Расчет напряжений и деформаций валов
Построить эпюры крутящих моментов
Эпюры главных напряжений при изгибе
Расчет балок на жесткость
Определение перемещений при помощи интеграла Мора
Сварная балка
Совместное действие изгиба и кручения
Расчет толстостенных труб
Практические расчеты стержней на устойчивость
Упругий удар
Неупругое деформирование
Предельная нагрузка для балок
Лабораторный практикум
Лабораторные работы
Опытная проверка теории косого изгиба

Испытание стальной трубы на изгиб с кручением

Строительная механика
Учет подвижной статической нагрузки
Расчет шпренгельных ферм
Интеграл Мора
Бесшарнирная арк
Неразрезная балка
 

Мощности в цепи синусоидального тока

На рис. 6.9.1а изображена произвольная пассивная цепь синусоидального тока с двумя зажимами для подключения источника питания (пассивный двухполюсник).

В общем случае ток и напряжение на входе этой цепи сдвинуты по фазе на угол :

u=Umsin(t); i=Imsin(t-).

Мгновенная мощность, потребляемая цепью от источника:

p=ui= UmImsin(t)sin(t-)=UIcos-UIcos(2t-.

График изменения этой мощности представлен на рис. 6.9.1.б вместе с графиками изменения тока и напряжения. Мощность колеблется с двойной частотой. Большую часть периода она имеет положительное значение, а меньшую – отрицательное. Отрицательное значение мощности свидетельствует о возврате части накопленной в конденсаторах и катушках энергии в питающий цепь источник энергии.

Среднее значение потребляемой мощности:

P=UIcosR

называется активной мощностью. Она характеризует среднюю скорость преобразования электрической энергии в другие виды энергии. Потребляемая в пассивной цепи активная мощность имеет всегда положительное значение. Она измеряется в ваттах (Вт).

Амплитуда переменной составляющей мощности:

S=UI=I2Z

называется полной мощностью. Она характеризует максимальную мощность, на которую должен быть рассчитан источник для питания данной цепи. Её иногда называют кажущейся, габаритной или аппаратной мощностью. Единицей её измерения является вольт-ампер (ВА)

Рис. 6.9.1.

Величина Q=UIsin2Xназывается реактивной мощностью. Она характеризует максимальную скорость обмена энергии между источником и цепью. Она может быть как положительной (при >0, т.е.в индуктивной цепи), так и отрицательной (при <0, т.е. в ёмкостной цепи). В связи с этим иногда говорят, что индуктивность потребляет «реактивную энергию», а ёмкость вырабатывает её. Реактивная мощность измеряется в вольт-амперах реактивных (ВАр).

В электрической цепи синусоидального тока выполняется баланс как активных, так и реактивных (но не полных!) мощностей, т. е. сумма мощностей всех источников равна сумме мощностей всех потребителей:

Pист .= Pпотр.; Qист .= Qпотр..

Соотношения между различными мощностями в цепи синусоидального тока можно наглядно представить в виде треугольника мощностей (рис. 6.9.2).

Рис.6.9.2

Экспериментальная часть

Задание

Измерьте с помощью виртуальных приборов мощности в цепи синусоидального тока . Расчётом проверьте баланс активных и реактивных мощностей.

Порядок выполнения работы

Измерьте омметром активное сопротивление катушки индуктивности 40мГн:

.

Rк= Ом.

Вычислите реактивные сопротивления катушки L=40 мГн и конденсатора
С=1 мкФ:

XL=2fL= Ом;

XC=1/2fC= Ом.

Соберите цепь согласно схеме (рис. 6.9.3), включив в неё виртуальные приборы V1 и A1 и безразлично виртуальные или реальные А2 и А3.

Подайте на схему синусоидальное напряжение 500 Гц и установите максимальную амплитуду, которую может дать генератор.

Активизируйте виртуальные приборы: для измерения напряжения и тока на входе цепи, а также активной и реактивной мощности источника.

Примечание:

Избегайте включать одновременно большое количество виртуальных приборов в основном блоке. Это уменьшает количество отсчётов и снижает точность измерений!

Запишите в табл 6.9.1 значения токов IRL, IR, IC и мощностей Рист и Qист.

Рис.6.9.3.

Таблица. 6.9.1

Ветвь

RкL

R

C

Баланс мощностей, мВт, мВАр

I, мА

Р=I2R,мВт

0

Рист

Pпотр

Q=I2X, мВАр

0

Qист

Qпотр

Вычислите по приведённым в табл. формулам значения активной и реактивной мощностей каждого потребителя. Вычислите сумму активных и алгебраическую сумму реактивных мощностей их суммы и проверьте баланс мощностей.

Трехфазные цепи синусоидального тока