Лабораторные работы по электротехнике

Математика
Примеры решения задач
Матрицы и определители
Действия над матрицами
Нахождение обратной матрицы
Прямая на плоскости
Аналитическая геометрия
Системы линейных алгебраических уравнений
Векторная алгебра
Начала анализа
Дифференциальное и интегральное исчисление
Кратные и криволинейные интегралы
Обыкновенные дифференциальные уравнения
Ряды
Теория поля
Элементы теории функций комплексного переменного
Найти координаты вектора
Кривые второго порядка

Исследование функций и построение графиков

Найти область определения функции
Основные элементарные функции
Функции трех переменных
Теория вероятности
Последовательность нанесения размеров
Изображение прямых, плоскостей и многогранников
Примеры построения многогранных поверхностей
Позиционные задачи на взаимопринадлежность
Пересечение прямой с координатными осями
Вращение прямой
Вращение плоскости
Проецирование прямой линии в точку

Решение метрических задач

Методичка по химии
Электронное строение атома
Химическая связь
Классы неорганических соединений
Элементы химической термодинамики и термохимии
Периодический закон и периодическая система Д.И. Менделеева
Химическая кинетика и химическое равновесие
Электролитическая диссоциация
Растворы
Коллоидные растворы
Растворы неэлектролитов
Окислительно-восстановительные реакции
Электрохимические процессы в гетерогенных системах
Коррозия металлов
Электролиз
Задачи по сопромату
Проверить прочность стального стержня
Расчеты на растяжение и сжатие
Геометрические характеристики плоских сечений
Определить осевые моменты инерции прямоугольника
Осевые моменты инерции плоских составных сечений
Дополнительные задачи на сдвиг
Расчет напряжений и деформаций валов
Построить эпюры крутящих моментов
Эпюры главных напряжений при изгибе
Расчет балок на жесткость
Определение перемещений при помощи интеграла Мора
Сварная балка
Совместное действие изгиба и кручения
Расчет толстостенных труб
Практические расчеты стержней на устойчивость
Упругий удар
Неупругое деформирование
Предельная нагрузка для балок
Лабораторный практикум
Лабораторные работы
Опытная проверка теории косого изгиба

Испытание стальной трубы на изгиб с кручением

Строительная механика
Учет подвижной статической нагрузки
Расчет шпренгельных ферм
Интеграл Мора
Бесшарнирная арк
Неразрезная балка
 

Реактивное сопротивление конденсатора

Конденсатор в цепи синусоидального тока оказывает токоограничивающий эффект, который вызван встречным действием напряжения при изменении знака заряда. Этот токоограничивающий эффект принято выражать как емкостное реактивное сопротивление (емкостной реактанс) XC.

Величина емкостного реактанса XC зависит от величины емкости конденсатора, измеряемой в Фарадах, и частоты приложенного напряжения переменного тока. В случае синусоидального напряжения имеем

XC = 1 ¤ (wC) = 1 ¤ (2pfC),

где XC - реактивное емкостное сопротивление, Ом,

C - емкость конденсатора, Ф,

w = 2pf - угловая частота синусоидального напряжения (тока).

Когда известны действующие значения тока в конденсаторе и падения напряжения на нем от этого тока, реактивное емкостное сопротивление можно вычислить по закону Ома:

XC = UCm ¤ ICm или XC = UC ¤ IC.

Емкостному реактансу часто присваивают знак «-» в отличие от индуктивного реактанса, которому приписывают знак «+».

Экспериментальная часть

Задание

Выведите на экран виртуального осциллографа кривые тока и напряжения различных конденсаторов емкостью 0,22 , 0,47 , 1 мкФ. Определите соответствующие реактивные сопротивления по формулам XC = 1 ¤ (2pfC) и XC= UC ¤ IC.

Порядок проведения эксперимента

Соберите цепь согласно схеме (рис. 4.2.1), установите синусоидальное напряжение U = 5 В и f = 1 кГц на выходе регулируемого источника, затем присоедините источник к входным зажимам цепи.

Включите виртуальные приборы V0, A1 и осциллограф.

«Подключите» два входа осциллографа к приборам V0 и A1, а остальные отключите.

Установите параметры развёртки осциллографа так, чтобы на экране было изображение примерно одного-двух периодов напряжения и тока.

Рис. 4.2.1

Снимите с осциллограмм или измерьте виртуальными приборами амплитудные значения напряжений Um и тока Im для емкостей и частот, указанных в табл. 4.2.1, и занесите их в соответствующие ячейки таблицы.

Таблица 4.2.1

f, кГц

1

0,8

0,6

0,4

 

Um, В

1,0 мкФ

 

Um, В

0,47 мкФ

 

Um, В

0,22 мкФ

 

Im, мА

1,0 мкФ

 

Im, мА

0,47 мкФ

 

Im, мА

0,22 мкФ

 

 

XC =

Um ¤ Im, кОм

1,0 мкФ

 

 

0,47 мкФ

 

0,22 мкФ

 

XC =

1 ¤ (wC), кОм

1,0 мкФ

 

0,47 мкФ

 

0,22 мкФ

 

Вычислите величины XC по формулам Um ¤ Im и 1 ¤ (wC) занесите их в табл. 4.2.1. Сравните результаты.

Перенесите величины XC на график (рис.4.2.2) для построения кривой XC = f(f).

Проверьте расчетным путем величину реактанса XC конденсатора емкостью С = 0,47 мкФ при частоте f = 600 Гц непосредственным измерением виртуальным прибором «Реактивное сопротивление».

Рис. 4.2.2

Вопрос: Как зависит емкостное сопротивление от частоты?

Ответ: ........................

Трехфазные цепи синусоидального тока