Дифференциалы Интегрирование функцийПостроить схематично график функции Вычисление интеграла Вычисление площади плоской фигуры Площадь плоской фигуры в полярных координатах Вычисление объема тела

Математика курсовая. Дифференциальные уравнения, интегралы

Вычисление интеграла ФНП.

Типовые задачи

Вычисление площади плоской фигуры

б) Площадь плоской фигуры в полярных координатах

На плоскости можно рассмотреть полярную систему координат . Тогда точке  соответствуют координаты  и , предполагаем полуоси  и  () совпадающими; причем  положительное
направление угла   – против вращения часовой стрелки.

Фигура на плоскости, ограниченная лучами ,  () и кривой , , называется криволинейным сектором. Очевидно, при   имеет круговой сектор и его площадь . Поэтому если провести процедуру построения интегральной суммы  для разбиения , ,  и системы точек , то при , где , , придем к интегралу , который можно
интерпретировать как площадь криволинейного сектора.

Итак, если предел интегральной суммы, построенной по указанной процедуре, существует, то площадь криволинейного сектора можно вычислить по формуле

.

ПРИМЕР 7. Найти площадь фигуры, ограниченной лемнискатой
Бернулли  и окружностью  (внутри
окружности).

Решение. Лемниската существует при , т.е. для  или для ; периодически повторяется для . Симметрия кривой следует из четности функции . При , изменяющемся от  до , значение  убывает от  до , т.е. значение  убывает от  до  () (см. рисунок). Пересечение лемнискаты и окружности 

  имеем при  и по
симметрии при .

Для вычисления площади используем симметрию фигуры ;  – площадь фигуры в I квадранте. Фигура  – объединение двух криволинейных секторов и поэтому

.

Окончательно имеем .


Вычисление криволинейных интегралов